数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: elim

\(\Large\textbf{老春头为何要把}[a_n\textbf{趋于}a]\textbf{篡改成}[a_n=a]?\)

[复制链接]
发表于 2024-5-11 09:13 | 显示全部楼层
elim 发表于 2024-5-11 09:08
据老春头,\(\small\infty+1=\infty\in\mathbb{N}\), 据皮亚诺,\(\small\infty < \infty+1\).
(自然数小于 ...


     elim,我的东西一点也不与皮亚诺公理矛盾,所以我和皮亚诺都没有错!与皮亚诺公理矛盾的是你的自然数有限论!所以有错的应该是你对皮亚诺公理的诠释!
根据现行《数学分析》你的∞=∞+1∈N,∞<∞+1=∞等表达式是错误的,因此你的错误认知不能代表标准分析!另外,你的婊子门生谈及周民强《实变函数论》3.1节可测函数的定义及其性质中所说的『允许函数取“值”±∞』并非就是把±∞作为一个数值。周民强先生明确表示这是『为了论述的简便和统一』的权宜之计。再者威氏极限定义一般是在大一上期前几课时讲,而可测函数理论一般在大二下期讲。像这种用后期学习的内容解释前期学习的内容洽当吗?
回复 支持 反对

使用道具 举报

发表于 2024-5-11 12:39 | 显示全部楼层
elim 发表于 2024-5-11 11:25
据老春头,\(\small\infty+1=\infty\in\mathbb{N}\), 据皮亚诺,\(\small\infty < \infty+1\).
(自然数小于 ...


皮亚诺公理(Peanoaxioms),也称皮亚诺公设,是意大利数学家朱塞佩·皮亚诺提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。
       皮亚诺的这五条公理用非形式化的方法叙述如下:
1、0是自然数;
2、每一个确定的自然数a都有一个确定的后继数a',且a'也是自然数;
3、如果b、c都是自然数a的后继数,那么b=c;
4、0不是任何自然数的后继数;
5、设S\(\subseteq\)N(自然数集合),若满足两个条件:(i)0∈S,(ii)如果n∈S,则n'∈S,那么S包含全体自然数,即S=N。
       elim你还要点脸不?皮亚诺5条公理中,哪一条讲了∞<∞+1?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-5-11 13:19 | 显示全部楼层
蠢疯顽瞎复习皮亚诺公理很好.但需要补习一点:
\(n < n‘=n+1 (\forall n\in\mathbb{N})\)  (皮亚诺算术)
如果\(\infty\in\mathbb{N}\), 就有\(\infty< \infty+1\)


据老春头,\(\small\infty+1=\infty\in\mathbb{N}\), 据皮亚诺,\(\small\infty < \infty+1\).
(自然数小于其后继). 于是老春头与皮亚诺产生
\(\color{Red}{\mathbf{\infty<\infty+1=\infty}}\)的矛盾.无穷加一不多减一不
少没错, 这个矛盾出于老春头楞称无穷大是自然数.
回复 支持 1 反对 0

使用道具 举报

发表于 2024-5-11 14:56 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-5-11 21:35 编辑
elim 发表于 2024-5-11 13:19
蠢疯顽瞎复习皮亚诺公理很好.但需要补习一点:
\(n < n‘=n+1 (\forall n\in\mathbb{N})\)  (皮亚诺算术) ...



elim,根据皮亚诺的这五条公理第二条『每一个确定的自然数a都有一个确定的后继数a',且a'也是自然数』这里的“确定”有两个
方面①具体写出;②逻辑认定。elim的【皮亚诺算术:n<n‘=n+1(\(\forall\)n∈N)】可视为n为逻辑确定的自然数,而现行《数学分析》中∞是一个集合,根本就不是一个确定的自然数。∞与自然数集N之间的关系是\(∞\subset N\),而根本不是∞∈N.
∞∈N和∞<∞+1是elim就不知道什么是∞,什么是n→∞的最好佐证!
       elim为了学术上争得赢,一贯诋毁诬陷对手。所以elim你还是要点脸好吗?皮亚诺5条公理中,哪一条讲了∞<∞+1?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2024-5-11 23:03 | 显示全部楼层
n < s(n) = n+1 是皮亚诺公理的简单推论,老头楞说
无穷大是自然数,那么就有 \(\infty<\infty+1\).
但\(\infty=\infty+1\) 是无穷大的本质,
这就导致矛盾。所以没有无穷大自然数。
也就没有自然数\(n\)使得\({\large\frac{1}{n}}=0\).
回复 支持 反对

使用道具 举报

发表于 2024-5-12 07:06 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-5-12 18:50 编辑
elim 发表于 2024-5-11 23:03
n < s(n) = n+1 是皮亚诺公理的简单推论,老头楞说
无穷大是自然数,那么就有 \(\infty



       elim成篇累牍的发表帖子说【n < s(n) = n+1 是皮亚诺公理的简单推论,老头楞说无穷大是自然数,那么就有∞<∞+1。∞=∞+1 是无穷大的本质,这就导致矛盾。所以没有无穷大自然数。也就没有自然数n使得\(\tfrac{1}{n}=0\)】
       elim的这段胡说八道看似有理实则大谬:
       1、elim的推论式n<s(n)=n+1是从何推出来的?皮亚诺公理第二条
『每一个确定的自然数a都有一个确定的后继数a',且a'也是自然数』。这里的“确定”有两层意思:①具体写出;②逻辑认定。即使elim推论式中的n是逻辑认定的自然数,也只能推出“一个确定的后继n+1”;请问elim先生,你推论式中的n<s(n)=n+1是什么意思?若s(n)放在这里是想表示有很多的n都等于n+1吗?这可与自然n的后继n+1的唯一性矛盾嘛!所以你的这个推论式有故意把水搅浑,趁浑水摸鱼之嫌!
       2、在现行的《数学分析》中∞是大于某一无论怎样大的正数\(N_ε\)的数的全体,因此∞是一个集合。这一点我们可从威尔斯特拉斯极限定义和菲赫金哥尔茨关于无穷大定义得到证明。你门生认为【第一个定义的是无穷大量,而不是∞,无穷大量本质上是函数,不是集合;第二个是在描述n→∞,而不是单独描述∞】我想请问“现代数学”的创始人,无穷大量和∞有什么区别?无穷大量的本质是函数,那么这个函数的定义域是一个数还是一个集合?无论描述n→∞,还是单独描述∞,那不都说明∞不只是单独的一个数,而是多个数的集体(集合)!
       3、春风晚霞不管你们“现代数学”派怎样辱骂始终坚持认为∞是集合,只有在集合的意义下才能合理解释《夜柔吠陀》一书中所记述的“从无限中添加或移去一部分结果仍是无限”,也就是∞±A=∞。也只有在集合的意义下才能合理的解希尔伯特的无穷宾馆命题的合理性!
       4、elim的【老头楞说无穷大是自然数,那么就有∞<∞+1。∞=∞+1 是无穷大的本质,这就导致矛盾。】这段胡扯有以下两处严重失实:
       ①、【老头楞说无穷大是自然数】,这是对春风晚霞的栽脏!春风晚霞历来坚持无穷大是自然数集的真子集(理论依据再次请你参见菲赫全哥尔茨《微积分学教程》四卷八册版笫一卷,第一分册P37页;及其《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|x_n|>\(N_E\),则称变量\(x_n\)为无穷大。)
       ②、∞<∞+1这个矛盾是elim始终不把∞看作集合,而看作是一个确定的自然数造成的。若把∞看作(其实本身就是)集合,就只有∞=∞+1这永真表达式了。
       elim大教主,你也够辛苦了。为反对春氏可达,你几乎篡改了所有现行数学的基础知识。与其这样劳而无功,你何不把我所有论述和你的所有辩驳写成诉状,递交法庭申请仲裁?春风晚霞随时准备参与应诉!elim教主,你觉得你的胜算有多大?
回复 支持 反对

使用道具 举报

发表于 2024-5-12 17:10 | 显示全部楼层
?无穷大是集合,如何理解呢,
如果是集合,它的元素是什么?
回复 支持 反对

使用道具 举报

发表于 2024-5-12 17:41 | 显示全部楼层
本帖最后由 春风晚霞 于 2024-5-13 06:12 编辑
mathmatical 发表于 2024-5-12 17:10
?无穷大是集合,如何理解呢,
如果是集合,它的元素是什么?



mathmatical先生;
       感谢先生垂询,现将先生所询之事回复于后,供先生审验!
       1、什么是无穷大:
     【定义】:若整序变量\(x_n\),由某项开始,其绝对值变成且保持着大于预先给定的任意大数E>0,当n>\(N_E\)时恒有|\(x_n\)|>\(N_E\),则称变量\(x_n\)为无穷大(参见菲赫全哥尔茨《微积分学教程》四卷八册版笫一卷,第一分册P37页;及其《数学分析原理》两卷四册版第一卷第一分册P59页无穷大的定义)
       不难看出无穷大是相对于预先给定的任意大的正数E的集合,记为\(\mathbb{N}_∞\),即\(\mathbb{N}_∞=\{n|n>N_E,n∈N\}\).
       根据E的任意性和皮亚诺公理(Peano axioms),我们不难证明集合\(\mathbb{N}_∞\)≠\(\Phi\)。事实上当\(n_0>N_E\)时,有\(n_1=n_0+1\)>\(N_E\),……,\(n_{i+1}=n_i+1\)>\(N_E\),……所以\(n_j\)∈\(\mathbb{N}_∞\),j∈N. 所以\(\mathbb{N}_∞\)是无限集。
         2、什么叫n→∞?
         因为∞是一个集合,所以n和∞的关系只能是n∈\(\mathbb{N}_∞\)和\(n\notin\mathbb{N}_∞\)两种情况。
       【定义】:当n∈\(\mathbb{N}_∞\)时,称n→∞.
       mathmatical先生,以上回复是我以前公开发表的宿帖,很明显集合\(\mathbb{N}_∞\)中的元素就是大于\(N_E\)的所有自然数。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2024-5-21 02:59 , Processed in 0.091797 second(s), 13 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表