\(由题意:\sqrt{\bigg\lfloor\big(\frac{1+\sqrt{5}}{2}\big)^{4n-2}\bigg\rfloor-1}=正整数\)
\(\sqrt{\bigg\lfloor\big(\frac{1+\sqrt{5}}{2}\big)^{4n-2}\bigg\rfloor-1}\)
\(=\bigg\lfloor\sqrt{\bigg\lfloor\big(\frac{1+\sqrt{5}}{2}\big)^{4n-2}\bigg\rfloor-1}\bigg\rfloor\)
\(=\bigg\lfloor\sqrt{\bigg\lfloor\big(\frac{1+\sqrt{5}}{2}\big)^{4n-2}\bigg\rfloor-0}\bigg\rfloor\)
\(=\bigg\lfloor\sqrt{\bigg\lfloor\big(\frac{1+\sqrt{5}}{2}\big)^{4n-2}\bigg\rfloor}\bigg\rfloor\)
\(=\bigg\lfloor\big(\frac{1+\sqrt{5}}{2}\big)^{2n-1}\bigg\rfloor\)=LucasL[2n+1]
LucasL[2n+1]是这样一串数:
{1, 4, 11, 29, 76, 199, 521, 1364, 3571, 9349, 24476, 64079, 167761, 439204, 1149851, 3010349,
7881196, 20633239, 54018521, 141422324, 370248451, 969323029, 2537720636, 6643838879,
17393796001, 45537549124, 119218851371, 312119004989, 817138163596, ......}
而 LucasL[n]是这样一串数:
{1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127,
24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349,
4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803, ......} |